By Topic

Regularized All-Pole Models for Speaker Verification Under Noisy Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Cemal Hanilci ; Uluda¿ University, Bursa, Turkey ; Tomi Kinnunen ; Figen Ertas ; Rahim Saeidi
more authors

Regularization of linear prediction based mel-frequency cepstral coefficient (MFCC) extraction in speaker verification is considered. Commonly, MFCCs are extracted from the discrete Fourier transform (DFT) spectrum of speech frames. In this paper, DFT spectrum estimate is replaced with the recently proposed regularized linear prediction (RLP) method. Regularization of temporally weighted variants, weighted LP (WLP) and stabilized WLP (SWLP) which have earlier shown success in speech and speaker recognition, is also introduced. A novel type of double autocorrelation (DAC) lag windowing is also proposed to enhance robustness. Experiments on the NIST 2002 corpus indicate that regularized all-pole methods (RLP, RWLP and RSWLP) yield large improvement on recognition accuracy under additive factory and babble noise conditions in terms of both equal error rate (EER) and minimum detection cost function (MinDCF).

Published in:

IEEE Signal Processing Letters  (Volume:19 ,  Issue: 3 )
IEEE Biometrics Compendium
IEEE RFIC Virtual Journal
IEEE RFID Virtual Journal