Cart (Loading....) | Create Account
Close category search window
 

Photonic Generation of Tunable Continuous-Wave Microwave Signals Using a Temporally-Stretched and Chirped Pulse-Train

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Wong, J.H. ; Electr. & Electron. Eng. Dept., Nanyang Technol. Univ., Singapore, Singapore ; Lam, H.Q. ; Aditya, S. ; Lee, K.E.K.
more authors

We show analytically and experimentally that direct photodetection of a temporally-stretched and chirped optical pulse-train together with its time-delayed replica can be exploited to realize the generation of tunable continuous-wave microwave signals. The proposed scheme utilizes the chromatic dispersion of the standard single-mode-fiber (SMF) to temporally-stretch and chirp an optical pulse-train in such a way that the pulses overlap with each other. The temporally-stretched pulse-train is then sent to a Mach-Zehnder Interferometer (MZI) where it first splits and then recombines with a time-delayed replica of itself at the output. Proper management of both the dispersion in the system as well as the relative time-delay of the two arms of the MZI enables one to tune the frequency of the generated microwave signal to any integer multiple of the pulse source's repetition frequency which is within the bandwidth of the photodetector. Based on the proposed scheme, using an initial 2 GHz pulse-train, we demonstrate generation of tunable continuous-wave microwave signals from 4 GHz to 14 GHz.

Published in:

Lightwave Technology, Journal of  (Volume:30 ,  Issue: 9 )

Date of Publication:

May1, 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.