By Topic

A Probabilistic Approach for Robust Leakage-Based MU-MIMO Downlink Beamforming with Imperfect Channel State Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Huiqin Du ; ECIT, Queen''s Univ. Belfast, Belfast, UK ; Pei-Jung Chung

Multi-user multiple-input and multiple-output (MU-MIMO) wireless systems have the potential to increase system capacity significantly by separating multiple users in the space domain through appropriate signal processing. These techniques require accurate channel state information at transmitter (CSIT) for their proper operations. With inevitable channel imperfections in practice, robustness has become an important issue in the development of beamforming techniques. In this work, we propose a robust leakage-based transmit beamforming design for multi-user MIMO systems by introducing a probabilistic constraint. In a multi-user system, the main challenge for transmit beamforming is to suppress the co-channel interference (CCI) from other users. Our approach optimizes the average signal-to-interference-plus-noise ratio (SINR) performance implicitly by maximizing the average signal power subject to probabilistic leakage and noise power constraint. Moreover, both the single-stream-per-user and multiple-stream-per-user cases are considered.In the latter case, a hybrid scheme is suggested by incorporating Alamouti code into the proposed design. Simulation results show that under proper control of the probabilistic constraint, both beamformers achieve good bit-error-rate (BER) performances, reliability of SINR levels as well as robustness against channel uncertainties.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:11 ,  Issue: 3 )