By Topic

Cramer-Rao Bounds for Target Tracking Problems Involving Colored Measurement Noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hendrick C. Lambert ; MIT Lincoln Laboratory

Recursive formulas are derived for computing the Cramer-Rao lower bound on the error covariance matrix associated with estimating the state vector of a moving target from a sequence of biased and temporally correlated measurements. The discussion is limited to deterministic motion with no process noise. Furthermore, the nonlinear mapping from the target state space to the observation space is assumed to be corrupted by additive noise. When the measurement noise process becomes temporally decorrelated, the recursive relation for computing the Cramer-Rao lower bound reduces to that originally obtained by Taylor [1]. Specific noise models are examined, and results are illustrated using an example. For the special case of the random walk process, it is shown that the recursive formula for the Cram¿Rao lower bound reduces to the error covariance propagation equations of the prewhitening filter of Bryson and Henrikson [2].

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:48 ,  Issue: 1 )