By Topic

Minimum Divergence Approaches for Robust Classification of Ground Moving Targets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
I. Bilik ; University of Massachusetts ; P. Khomchuk

This work addresses the problem of automatic target recognition (ATR) using micro-Doppler information obtained by a low-resolution ground surveillance radar. Gaussian mixture models (GMMs) are used to represent the prior statistical information of threatening ground moving targets such as walking personnel and tracked or wheeled vehicles. A minimum divergence (MD) classification approach with a variety of distance measures is proposed. The proposed MD classification approach is robust with respect to modeling errors and can be efficiently used in low signal-to-noise (SNR) and training data deficient scenarios. The MD classifier is implemented using a variety of computationally efficient approximations of distance measures between GMMs. Performance of the MD classifier was analyzed using collected radar measurements and the influence of different distance measures and their approximations on classification performance is assessed. The proposed MD classifier outperforms the maximum likelihood (ML) classifier in low-SNR and training data deficient scenarios while providing a computationally efficient implementation.

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:48 ,  Issue: 1 )