By Topic

Comparison Between Nonlinear Filtering Techniques for Spiraling Ballistic Missile State Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jinwhan Kim ; Div. of Ocean Syst. Eng., KAIST, Daejeon, South Korea ; Vaddi, S.S. ; Menon, P.K. ; Ohlmeyer, E.J.

During the reentry to the atmosphere, certain ballistic missiles are known to undergo violent spiraling motions induced by aerodynamic resonance between roll and yaw/pitch modes. Successful interception of such spiraling targets is critically dependent on the performance of the target state estimator. Strong nonlinearities involved in the system dynamics and measurement equations together with sensor noise make this a challenging estimation task. The performance of an extended Kalman filter (EKF), an unscented Kalman filter (UKF), and a particle filter (PF) designed for this estimation problem is compared in this paper. Additionally, a hybrid Rao-Blackwellized PF (RBPF) approach combining the EKF and the PF is also considered. Simulation results are provided to support the conclusions from the present study.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:48 ,  Issue: 1 )