By Topic

Output feedback tracking control of uncertain non-holonomic wheeled mobile robots: a dynamic surface control approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
K. Shojaei ; Iran University of Science and Technology, Tehran, Iran ; A. M. Shahri

This study addresses the trajectory tracking control problem of electrically driven wheeled mobile robots under non-holonomic constraints in the presence of model uncertainties without velocity measurement. By defining a suitable set of output equations, a new input-output model of wheeled mobile robots is developed, which helps the designer utilise the classic control algorithms of robot manipulators. An observer-based trajectory tracking controller is proposed for the new wheeled mobile robot (WMR) model. Then, in order to reduce the design complexity, the dynamic surface control approach is effectively exploited to propose a tracking controller considering the actuator dynamics. Adaptive robust techniques are also adopted to cope with the parametric and non-parametric uncertainties in the WMR model. A Lyapunov-based stability analysis is utilised to guarantee that tracking and state estimation errors are uniformly ultimately bounded. Simulation results are presented to illustrate the feasibility and efficiency of the proposed controller.

Published in:

IET Control Theory & Applications  (Volume:6 ,  Issue: 2 )