Cart (Loading....) | Create Account
Close category search window

A CMOS Noise-Squeezing Amplifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wooram Lee ; Sch. of Electr. & Comput. Eng., Cornell Univ., Ithaca, NY, USA ; Afshari, E.

Noise squeezing occurs through phase-sensitive gain implemented by a parametric process in a nonlinear LC resonator. This process enhances the sensitivity for one quadrature component of an input signal at the expense of degrading the sensitivity for the other quadrature. We demonstrate an 8.75-GHz parametric resonant amplifier in a 0.13-μm CMOS process, which provides gain of 21 dB and 12 dB for the two quadrature components. This 9-dB gain difference results in a 2.5-dB sensitivity improvement for one quadrature, while it degrades the other quadrature sensitivity by 6.4 dB. The amplifier bandwidth is around 800 MHz and draws 36 mA from a 1.2-V supply.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:60 ,  Issue: 2 )

Date of Publication:

Feb. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.