By Topic

Regularized Kernel Discriminant Analysis With a Robust Kernel for Face Recognition and Verification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zafeiriou, S. ; Dept. of Comput., Imperial Coll., London, UK ; Tzimiropoulos, G. ; Petrou, M. ; Stathaki, T.

We propose a robust approach to discriminant kernel-based feature extraction for face recognition and verification. We show, for the first time, how to perform the eigen analysis of the within-class scatter matrix directly in the feature space. This eigen analysis provides the eigenspectrum of its range space and the corresponding eigenvectors as well as the eigenvectors spanning its null space. Based on our analysis, we propose a kernel discriminant analysis (KDA) which combines eigenspectrum regularization with a feature-level scheme (ER-KDA). Finally, we combine the proposed ER-KDA with a nonlinear robust kernel particularly suitable for face recognition/verification applications which require robustness against outliers caused by occlusions and illumination changes. We applied the proposed framework to several popular databases (Yale, AR, XM2VTS) and achieved state-of-the-art performance for most of our experiments.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:23 ,  Issue: 3 )