Cart (Loading....) | Create Account
Close category search window
 

Cross-Pollination of Normalization Techniques From Speaker to Face Authentication Using Gaussian Mixture Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wallace, R. ; Idiap Res. Inst., Martigny, Switzerland ; McLaren, M. ; McCool, C. ; Marcel, S.

This paper applies score and feature normalization techniques to parts-based Gaussian mixture model (GMM) face authentication. In particular, we propose to utilize techniques that are well established in state-of-the-art speaker authentication, and apply them to the face authentication task. For score normalization, T-, Z- and ZT-norm techniques are evaluated. For feature normalization, we propose a generalization of feature warping to 2D images, which is applied to discrete cosine transform (DCT) features prior to modeling. Evaluation is performed on a range of challenging databases relevant to forensics and security, including surveillance and access control scenarios. The normalization techniques are shown to generalize well to the face authentication task, resulting in relative improvements in half total error rate (HTER) of between 17% and 62%.

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:7 ,  Issue: 2 )
Biometrics Compendium, IEEE

Date of Publication:

April 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.