We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

A Transient Electrothermal Analysis of Three-Dimensional Integrated Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Harris, T.R. ; Dept. of Electr. & Comput. Eng., North Carolina State Univ., Raleigh, NC, USA ; Priyadarshi, S. ; Melamed, S. ; Ortega, C.
more authors

A transient electrothermal simulation of a 3-D integrated circuit (3DIC) is reported that uses dynamic modeling of the thermal network and hierarchical electrothermal simulation. This is a practical alternative to full transistor electrothermal simulations that are computationally prohibitive. Simulations are compared to measurements for a token-generating asynchronous 3DIC clocking at a maximum frequency of 1 GHz. The electrical network is based on computationally efficient electrothermal macromodels of standard and custom cells. These are linked in a physically consistent manner with a detailed thermal network extracted from an OpenAccess layout file. Coupled with model-order reduction techniques, hierarchical dynamic electrothermal simulation of large 3DICs is shown to be tractable, yielding spatial and temporal selected transistor-level thermal profiles.

Published in:

Components, Packaging and Manufacturing Technology, IEEE Transactions on  (Volume:2 ,  Issue: 4 )