By Topic

Zero-Gradient-Sum Algorithms for Distributed Convex Optimization: The Continuous-Time Case

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jie Lu ; Sch. of Electr. & Comput. Eng., Univ. of Oklahoma, Norman, OK, USA ; Choon Yik Tang

This technical note presents a set of continuous-time distributed algorithms that solve unconstrained, separable, convex optimization problems over undirected networks with fixed topologies. The algorithms are developed using a Lyapunov function candidate that exploits convexity, and are called Zero-Gradient-Sum (ZGS) algorithms as they yield nonlinear networked dynamical systems that evolve invariantly on a zero-gradient-sum manifold and converge asymptotically to the unknown optimizer. We also describe a systematic way to construct ZGS algorithms, show that a subset of them actually converge exponentially, and obtain lower and upper bounds on their convergence rates in terms of the network topologies, problem characteristics, and algorithm parameters, including the algebraic connectivity, Laplacian spectral radius, and function curvatures. The findings of this technical note may be regarded as a natural generalization of several well-known algorithms and results for distributed consensus, to distributed convex optimization.

Published in:

Automatic Control, IEEE Transactions on  (Volume:57 ,  Issue: 9 )