By Topic

Electrical Model and Experimental Analysis of the Atmospheric-Pressure Homogeneous Dielectric Barrier Discharge in He

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zhi Fang ; School of Automation and Electrical Engineering, Nanjing University of Technology, Nanjing, China ; Shengchang Ji ; Jun Pan ; Tao Shao
more authors

A dynamic electrical model for a plane-parallel configuration homogeneous dielectric barrier discharge (DBD) is investigated using the MATLAB Simulink. The electrical model is based on an equivalent electric circuit, in which the DBD is represented by a voltage-controlled current source associated to a resistance and a capacitance value. In addition, a plane-parallel DBD cell filled with He gas is used for the experiments, and a sinusoidal voltage of up to 5-kV peak value at frequencies of 10 kHz is applied to the discharge electrodes for the generation of homogeneous discharges. The electrical characteristics of homogeneous DBD under different operating conditions are studied using the electrical model simulations and experiments, and a comparison between them is conducted. It is shown that the simulated voltage and current waveforms and Lissajous figures are consistent with the experimental ones, which validates the functionality of the model. The dynamic behavior of the discharge parameters (such as gas gap voltage, discharge current, discharge consumed power, and transported charges), which are not measurable in the real process, is studied with the electrical simulation model, and the voltage-current curves are also obtained from simulation and used to analyze the evolution trajectory of the homogeneous DBD.

Published in:

IEEE Transactions on Plasma Science  (Volume:40 ,  Issue: 3 )