By Topic

Fixed-Point CORDIC-Based QR Decomposition by Givens Rotations on FPGA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dongdong Chen ; Dept. of Electr. & Comput. Eng., Univ. of Victoria, Victoria, BC, Canada ; Sima, M.

This paper presents a parallel architecture of an QR decomposition systolic array based on the Givens rotations algorithm on FPGA. The proposed architecture adopts a direct mapping by 21 fixed-point CORDIC-based process units that can compute the QR decomposition for an 4×4 real matrix. In order to achieve a comprehensive resource and performance evaluation, the computational error analysis, the resource utilized, and speed achieved on Virtex5 XC5VTX150T FPGA, are evaluated with the different precision of the intermediate word lengthes. The evaluation results show that 1) the proposed systolic array satisfies 99.9% correct 4×4 QR decomposition for the 2-13 accuracy requirement when the word length of the data path is lager than 25-bit, 2) occupies about 2, 810 (13%) slices, and achieves about 2.06 M/sec updates by running at the maximum frequency 111 MHz.4x4 real matrix.

Published in:

Reconfigurable Computing and FPGAs (ReConFig), 2011 International Conference on

Date of Conference:

Nov. 30 2011-Dec. 2 2011