By Topic

Approximation of Range in Materials as a Function of Incident Electron Energy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wilson, G. ; Phys. Dept., Utah State Univ., Logan, UT, USA ; Dennison, J.R.

A simple composite analytic expression has been developed to approximate the electron range in materials. The expression is applicable over more than six orders of magnitude in energy (<; 10 eV to >; MeV) and range ( 10-9-10-2 m), with an uncertainty of ≤ 20% for most conducting, semiconducting, and insulating materials. This is accomplished by fitting data from two standard NIST databases [ESTAR for the higher energy range and the electron inelastic mean free path (IMFP) for the lower energies]. In turn, these data have been fit with well-established semiempirical models for range and IMFP that are related to standard material properties (e.g., density, atomic number, atomic weight, stoichiometry, and bandgap energy). Simple relations between the IMFP and the range, based on the continuous-slow-down approximation, are used to merge results from the two databases into a composite range expression. A single free parameter, termed the effective number of valence electrons per atom Nv, is used to predict the range over the entire energy span.

Published in:

Plasma Science, IEEE Transactions on  (Volume:40 ,  Issue: 2 )