By Topic

Thin Film Solar Cells Fabricated Using Cross-Shaped Pattern Epilayer Lift-Off Technology for Substrate Recycling Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Ray-Hua Horng ; Grad. Inst. of Precision Eng., Nat. Chung Hsing Univ., Taichung, Taiwan ; Ming-Chun Tseng ; Fan-Lei Wu ; Chia-Hao Li
more authors

This study reports the use of cross-shaped pattern epitaxial lift-off (ELO) technology to release crack-free single crystal epilayers with a solar cell structure from a gallium arsenide (GaAs) substrate. A cross-shaped pattern array was used to define cell size and provide the etch path for the etchant solution. AlAs was used as a sacrificial layer and etched using a hydrofluoric acid etchant through the cross-shaped hole. Results indicate that the entire wafer can be etched simultaneously. The desired carrier, i.e., the electroplate nickel substrate, can directly contact the epilayer without wax or low-viscosity epoxy, and can also be applied to an external force through magnetic attraction to decrease the release time. After the cross-shaped pattern ELO process, the separated GaAs substrate can be recycled through chemical cleaning. The performance of solar cells grown on new and recycled GaAs substrates remained above 90% of the initial performance when the substrate was recycled less than three times.

Published in:

Electron Devices, IEEE Transactions on  (Volume:59 ,  Issue: 3 )