By Topic

Fast Recursive Computation of 3D Geometric Moments from Surface Meshes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Patrice Koehl ; University of California, Davis and National University of Singapore, Singapore

A new exact algorithm is proposed to compute the 3D geometric moments of a homogeneous shape defined by an unstructured triangulation of its surface. This algorithm relies on the analytical integration of the moments on tetrahedra defined by the surface triangles and a central point and on a set of recurrent relationships between the corresponding integrals, and achieves linear running time complexities with respect to the number of triangles in the surface mesh and with respect to the number of moments that are computed. This effectively reduces the complexity for computing moments up to order N from N6 to N3 with respect to the fastest previously proposed exact algorithm.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:34 ,  Issue: 11 )