By Topic

A Concatenational Graph Evolution Aging Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jinli Suo ; Tsinghua University, Beijing ; Xilin Chen ; Shiguang Shan ; Wen Gao
more authors

Modeling the long-term face aging process is of great importance for face recognition and animation, but there is a lack of sufficient long-term face aging sequences for model learning. To address this problem, we propose a CONcatenational GRaph Evolution (CONGRE) aging model, which adopts decomposition strategy in both spatial and temporal aspects to learn long-term aging patterns from partially dense aging databases. In spatial aspect, we build a graphical face representation, in which a human face is decomposed into mutually interrelated subregions under anatomical guidance. In temporal aspect, the long-term evolution of the above graphical representation is then modeled by connecting sequential short-term patterns following the Markov property of aging process under smoothness constraints between neighboring short-term patterns and consistency constraints among subregions. The proposed model also considers the diversity of face aging by proposing probabilistic concatenation strategy between short-term patterns and applying scholastic sampling in aging prediction. In experiments, the aging prediction results generated by the learned aging models are evaluated both subjectively and objectively to validate the proposed model.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:34 ,  Issue: 11 )