Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Scalable Active Learning for Multiclass Image Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Joshi, A.J. ; Google, Inc., Mountain View, CA, USA ; Porikli, F. ; Papanikolopoulos, N.P.

Machine learning techniques for computer vision applications like object recognition, scene classification, etc., require a large number of training samples for satisfactory performance. Especially when classification is to be performed over many categories, providing enough training samples for each category is infeasible. This paper describes new ideas in multiclass active learning to deal with the training bottleneck, making it easier to train large multiclass image classification systems. First, we propose a new interaction modality for training which requires only yes-no type binary feedback instead of a precise category label. The modality is especially powerful in the presence of hundreds of categories. For the proposed modality, we develop a Value-of-Information (VOI) algorithm that chooses informative queries while also considering user annotation cost. Second, we propose an active selection measure that works with many categories and is extremely fast to compute. This measure is employed to perform a fast seed search before computing VOI, resulting in an algorithm that scales linearly with dataset size. Third, we use locality sensitive hashing to provide a very fast approximation to active learning, which gives sublinear time scaling, allowing application to very large datasets. The approximation provides up to two orders of magnitude speedups with little loss in accuracy. Thorough empirical evaluation of classification accuracy, noise sensitivity, imbalanced data, and computational performance on a diverse set of image datasets demonstrates the strengths of the proposed algorithms.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:34 ,  Issue: 11 )