Cart (Loading....) | Create Account
Close category search window
 

A Blur-Robust Descriptor with Applications to Face Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gopalan, R. ; Video & Multimedia Dept., AT&T Labs. - Res., Middletown, NJ, USA ; Taheri, S. ; Turaga, P. ; Chellappa, R.

Understanding the effect of blur is an important problem in unconstrained visual analysis. We address this problem in the context of image-based recognition by a fusion of image-formation models and differential geometric tools. First, we discuss the space spanned by blurred versions of an image and then, under certain assumptions, provide a differential geometric analysis of that space. More specifically, we create a subspace resulting from convolution of an image with a complete set of orthonormal basis functions of a prespecified maximum size (that can represent an arbitrary blur kernel within that size), and show that the corresponding subspaces created from a clean image and its blurred versions are equal under the ideal case of zero noise and some assumptions on the properties of blur kernels. We then study the practical utility of this subspace representation for the problem of direct recognition of blurred faces by viewing the subspaces as points on the Grassmann manifold and present methods to perform recognition for cases where the blur is both homogenous and spatially varying. We empirically analyze the effect of noise, as well as the presence of other facial variations between the gallery and probe images, and provide comparisons with existing approaches on standard data sets.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:34 ,  Issue: 6 )
Biometrics Compendium, IEEE

Date of Publication:

June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.