By Topic

Multilevel Diskless Checkpointing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Doug Hakkarinen ; Colorado School of Mines, Golden ; Zizhong Chen

Extreme scale systems available before the end of this decade are expected to have 100 million to 1 billion CPU cores. The probability that a failure occurs during an application execution is expected to be much higher than today's systems. Counteracting this higher failure rate may require a combination of disk-based checkpointing, diskless checkpointing, and algorithmic fault tolerance. Diskless checkpointing is an efficient technique to tolerate a small number of process failures in large parallel and distributed systems. In the literature, a simultaneous failure of no more than N processes is often tolerated by using a one-level Reed-Solomon checkpointing scheme for N simultaneous process failures, whose overhead often increases quickly as N increases. We introduce an N-level diskless checkpointing scheme that reduces the overhead for tolerating a simultaneous failure of up to N processes. Each level is a diskless checkpointing scheme for a simultaneous failure of i processes, where i = 1, 2,..., N. Simulation results indicate the proposed N-level diskless checkpointing scheme achieves lower fault tolerance overhead than the one-level Reed-Solomon checkpointing scheme for N simultaneous processor failures.

Published in:

IEEE Transactions on Computers  (Volume:62 ,  Issue: 4 )