By Topic

Influence of non-newtonian fluid dynamics on SAW induced acoustic streaming in view of biological applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Subramanian KRS Sankaranarayanan ; Center for Nanoscale Materials, Argonne National Laboratory, IL-60459, France ; Reetu Singh ; Venkat R Bhethanabotla

Surface acoustic wave (SAW) devices are finding increasing use in medical diagnostic applications, such as detection of specific proteins in bodily fluids for detection of pathologies. These devices can also be used in Lab-On-a-Chip devices for biological applications that utilize micro-fluidics for detection, transport, mixing, and biological assays. In applications aimed at biological sensing, the sensing medium such as blood exhibits a non-Newtonian behavior. In biosensing applications of SAW devices, SAW induced acoustic streaming which refers to fluid motion induced by high frequency sound waves, is an important phenomenon that can be used for the removal of non-specifically bound proteins from the device surface. Acoustic streaming also finds use in a wide variety of other applications such as detection of ovarian cysts and detection of blood clotting via ultrasound and convective transport in microfluidic applications of SAW devices. This work reports on the influence of non-Newtonian fluid dynamics on the acoustic streaming and fluid velocity profiles in SAW devices, using a computational fluid-structure interaction finite element model.

Published in:

Sensors, 2011 IEEE

Date of Conference:

28-31 Oct. 2011