By Topic

Thermal history sensing inside high-explosive environments using thermoluminescent microparticles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Mah, M.L. ; Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Armstrong, P.R. ; Kim, S.S. ; Carney, J.R.
more authors

Thermoluminescent LiF:Mg,Ti (TLD-100) microparticle sensors are demonstrated to record the thermal history of the region near a detonated high explosive. Microparticles were gamma-irradiated to fill their charge-carrier traps and then exposed to the detonation of 20 g of a plastic bonded explosive formulation containing HMX and Al particles at a test distance of approximately 22 cm from the center of the detonation. The thermal history was reconstructed by measuring the thermoluminescent signature of the traps and matching it to appropriate models. The trap populations derived from luminescence measurements and modeling indicate that the particles experienced a maximum temperature of 240 °C, then cooled to 1 °C above ambient temperature within 0.4 seconds. The resulting glow curve intensity is calculated to match the observed post-detonation signal to 3% averaged over the comparison values used for reconstruction.

Published in:

Sensors, 2011 IEEE

Date of Conference:

28-31 Oct. 2011