Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Improvement of CMOS-MEMS accelerometer using the symmetric layers stacking design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Ting-Han Yen ; Power Mech. Eng. Dept., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Ming-Han Tsai ; Chun-I Chang ; Yu-Chia Liu
more authors

This study presents a novel CMOS-MEMS capacitive type accelerometer design which consists of symmetric layers (4 metal and 3 dielectric layers) stacking to reduce the bending of suspended structures due to thin film residual stresses. Thus, the capacitance loss caused by the mismatch of sensing electrodes is reduced. Moreover, structures with symmetric layers stacking have less thermal deformation by temperature variation. A simple post-CMOS process including oxide wet-etching and dry XeF2 etching is established to fabricate the device. Measurement shows maximum bending deformation of a suspended 390μm×430μm structure is only 1μm, and mismatch of fixed and movable sensing electrodes is reduced to 1μm. The bending curvature has only ~2% change as temperature increased 80°C. The sensitivity of this accelerometer is 1.46mV/G (in comparison, the accelerometer with asymmetric layers stacking structure has sensitivity of 0.07mV/G), and the noise level is 0.35mG/√Hz.

Published in:

Sensors, 2011 IEEE

Date of Conference:

28-31 Oct. 2011