By Topic

Lossy Mode Resonance-based pH sensor using a tapered single mode optical fiber coated with a polymeric nanostructure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Socorro, A.B. ; Electr. & Electron. Eng. Dept., Univ. Publica de Navarra (UPNA), Pamplona, Spain ; Del Villar, I. ; Corres, J.M. ; Arregui, F.J.
more authors

This contribution presents a pH sensor based on the combination of two technologies: tapered standard-single mode optical fiber (S-SMF) and an electromagnetic resonance phenomenon called Lossy Mode Resonance (LMR). This last phenomenon is produced by coating the optical structure with a thin polymeric film, which for specific values of the coating refractive index and thickness causes a maximum coupling of light guided in the tapered S-SMF region. Layer-by-layer electrostatic self assembly technique was used for the fabrication of a polymeric sensing nanostructure. The construction process was optimized in order to visualize the LMR behavior with a device length of 5 mm. The sensing combination produces a 250 nm wavelength-shift and a 20 dB attenuation variation of the LMR when varying the pH from 4 to 6.

Published in:

Sensors, 2011 IEEE

Date of Conference:

28-31 Oct. 2011