Cart (Loading....) | Create Account
Close category search window
 

Enhanced airborne nanoparticles mass sensing using a high-mode resonant silicon cantilever sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Wasisto, H.S. ; Inst. of Semicond. Technol. (IHT), Tech. Univ. of Braunschweig, Braunschweig, Germany ; Merzsch, S. ; Waag, A. ; Kirsch, I.
more authors

A high-mode resonant silicon cantilever sensor is developed for detection of airborne nanoparticles (NPs) by monitoring the change in resonant frequency induced by an additional trapped NPs mass. A piezoresistive bridge is integrated in the cantilever for signal sensing. An electrostatic method is employed to trap the NPs on the cantilever surface. The experimental results indicate that the cantilever sensor operated in the second resonant mode exhibits higher quality factor than the fundamental mode, i.e. 2100, implying that a higher sensitivity, i.e. 32.75 Hz/ng, can be attained by operation at higher resonant mode. The influences of thermal, pressure and relative humidity, respectively, on the sensor have also been investigated with the purpose of observing the limitation of sensor sensitivity imposed by the environment.

Published in:

Sensors, 2011 IEEE

Date of Conference:

28-31 Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.