By Topic

Bioinspired resource management for multiple-sensor target tracking systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lambert, H.C. ; MIT Lincoln Lab., Lexington, MA, USA ; Sinno, D.

We present an algorithm, inspired by self-organization and stigmergy observed in biological swarms, for managing multiple sensors tracking large numbers of targets. We devise a decentralized architecture wherein autonomous sensors manage their own data collection resources and task themselves. Sensors cannot communicate with each other directly; however, a global track file, which is continuously broadcast, allows the sensors to infer their contributions to the global estimation of target states. Sensors can transmit their data (either as raw measurements or some compressed format) only to a central processor where their data are combined to update the global track file. We outline information-theoretic rules for the general multiple-sensor Bayesian target tracking problem. We provide specific formulas for problems dominated by additive white Gaussian noise. Using Cramér-Rao lower bounds as surrogates for error covariances, we illustrate, using numerical scenarios involving ballistic targets, that the bioinspired algorithm is highly scalable and performs very well for large numbers of targets.

Published in:

Sensors, 2011 IEEE

Date of Conference:

28-31 Oct. 2011