By Topic

Efficient learning of sparse, distributed, convolutional feature representations for object recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kihyuk Sohn ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI, USA ; Dae Yon Jung ; Honglak Lee ; Hero, A.O.

Informative image representations are important in achieving state-of-the-art performance in object recognition tasks. Among feature learning algorithms that are used to develop image representations, restricted Boltzmann machines (RBMs) have good expressive power and build effective representations. However, the difficulty of training RBMs has been a barrier to their wide use. To address this difficulty, we show the connections between mixture models and RBMs and present an efficient training method for RBMs that utilize these connections. To the best of our knowledge, this is the first work showing that RBMs can be trained with almost no hyperparameter tuning to provide classification performance similar to or significantly better than mixture models (e.g., Gaussian mixture models). Along with this efficient training, we evaluate the importance of convolutional training that can capture a larger spatial context with less redundancy, as compared to non-convolutional training. Overall, our method achieves state-of-the-art performance on both Caltech 101 / 256 datasets using a single type of feature.

Published in:

Computer Vision (ICCV), 2011 IEEE International Conference on

Date of Conference:

6-13 Nov. 2011