By Topic

Efficient Orthogonal Matching Pursuit using sparse random projections for scene and video classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vitaladevuni, S.N. ; Raytheon BBN Technol., Cambridge, MA, USA ; Natarajan, P. ; Prasad, R. ; Natarajan, P.

Sparse projection has been shown to be highly effective in several domains, including image denoising and scene / object classification. However, practical application to large scale problems such as video analysis requires efficient versions of sparse projection algorithms such as Orthogonal Matching Pursuit (OMP). In particular, random projection based locality sensitive hashing (LSH) has been proposed for OMP. In this paper, we propose a novel technique called Comparison Hadamard random projection (CHRP) for further improving the efficiency of LSH within OMP. CHRP combines two techniques:(1) The Fast Johnson-Lindenstrauss Transform (FJLT) which uses a randomized Hadamard transform and sparse projection matrix for LSH, and (2) Achlioptas' random projection that uses only addition and comparison operations. Our approach provides the robustness of FJLT while completely avoiding multiplications. We empirically validate CHRP's efficacy by performing a suite of experiments for image denoising, scene classification, and video categorization. Our experiments indicate that CHRP significantly speeds-up OMP with negligible loss in classification accuracy.

Published in:

Computer Vision (ICCV), 2011 IEEE International Conference on

Date of Conference:

6-13 Nov. 2011