By Topic

Manhattan scene understanding using monocular, stereo, and 3D features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Flint, Alex ; Active Vision Lab., Oxford Univ., Oxford, UK ; Murray, D. ; Reid, I.

This paper addresses scene understanding in the context of a moving camera, integrating semantic reasoning ideas from monocular vision with 3D information available through structure-from-motion. We combine geometric and photometric cues in a Bayesian framework, building on recent successes leveraging the indoor Manhattan assumption in monocular vision. We focus on indoor environments and show how to extract key boundaries while ignoring clutter and decorations. To achieve this we present a graphical model that relates photometric cues learned from labeled data, stereo photo-consistency across multiple views, and depth cues derived from structure-from-motion point clouds. We show how to solve MAP inference using dynamic programming, allowing exact, global inference in ~100 ms (in addition to feature computation of under one second) without using specialized hardware. Experiments show our system out-performing the state-of-the-art.

Published in:

Computer Vision (ICCV), 2011 IEEE International Conference on

Date of Conference:

6-13 Nov. 2011