Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

Variational recursive joint estimation of dense scene structure and camera motion from monocular high speed traffic sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Becker, F. ; HCI & IPA, Heidelberg Univ., Heidelberg, Germany ; Lenzen, F. ; Kappes, J.H. ; Schnorr, C.

We present an approach to jointly estimating camera motion and dense scene structure in terms of depth maps from monocular image sequences in driver-assistance scenarios. For two consecutive frames of a sequence taken with a single fast moving camera, the approach combines numerical estimation of egomotion on the Euclidean manifold of motion parameters with variational regularization of dense depth map estimation. Embedding this online joint estimator into a recursive framework achieves a pronounced spatio-temporal filtering effect and robustness. We report the evaluation of thousands of images taken from a car moving at speed up to 100 km/h. The results compare favorably with two alternative settings that require more input data: stereo based scene reconstruction and camera motion estimation in batch mode using multiple frames. The employed benchmark dataset is publicly available.

Published in:

Computer Vision (ICCV), 2011 IEEE International Conference on

Date of Conference:

6-13 Nov. 2011