By Topic

Sparse multi-task regression and feature selection to identify brain imaging predictors for memory performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Hua Wang ; Comput. Sci. & Eng., Univ. of Texas at Arlington, Arlington, TX, USA ; Feiping Nie ; Heng Huang ; Risacher, S.
more authors

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive impairment of memory and other cognitive functions, which makes regression analysis a suitable model to study whether neuroimaging measures can help predict memory performance and track the progression of AD. Existing memory performance prediction methods via regression, however, do not take into account either the interconnected structures within imaging data or those among memory scores, which inevitably restricts their predictive capabilities. To bridge this gap, we propose a novel Sparse Multi-tAsk Regression and feaTure selection (SMART) method to jointly analyze all the imaging and clinical data under a single regression framework and with shared underlying sparse representations. Two convex regularizations are combined and used in the model to enable sparsity as well as facilitate multi-task learning. The effectiveness of the proposed method is demonstrated by both clearly improved prediction performances in all empirical test cases and a compact set of selected RAVLT-relevant MRI predictors that accord with prior studies.

Published in:

Computer Vision (ICCV), 2011 IEEE International Conference on

Date of Conference:

6-13 Nov. 2011