By Topic

Minimum near-convex decomposition for robust shape representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhou Ren ; Nanyang Technological University, Singapore ; Junsong Yuan ; Chunyuan Li ; Wenyu Liu

Shape decomposition is a fundamental problem for part-based shape representation. We propose a novel shape decomposition method called Minimum Near-Convex Decomposition (MNCD), which decomposes 2D and 3D arbitrary shapes into minimum number of “near-convex” parts. With the degree of near-convexity a user specified parameter, our decomposition is robust to large local distortions and shape deformation. The shape decomposition is formulated as a combinatorial optimization problem by minimizing the number of non-intersection cuts. Two major perception rules are also imposed into our scheme to improve the visual naturalness of the decomposition. The global optimal solution of this challenging discrete optimization problem is obtained by a dynamic subgradient-based branch-and-bound search. Both theoretical analysis and experiment results show that our approach outperforms the state-of-the-art results without introducing redundant parts. Finally we also show the superiority of our method in the application of hand gesture recognition.

Published in:

2011 International Conference on Computer Vision

Date of Conference:

6-13 Nov. 2011