Cart (Loading....) | Create Account
Close category search window
 

Video from a single coded exposure photograph using a learned over-complete dictionary

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Cameras face a fundamental tradeoff between the spatial and temporal resolution - digital still cameras can capture images with high spatial resolution, but most high-speed video cameras suffer from low spatial resolution. It is hard to overcome this tradeoff without incurring a significant increase in hardware costs. In this paper, we propose techniques for sampling, representing and reconstructing the space-time volume in order to overcome this tradeoff. Our approach has two important distinctions compared to previous works: (1) we achieve sparse representation of videos by learning an over-complete dictionary on video patches, and (2) we adhere to practical constraints on sampling scheme which is imposed by architectures of present image sensor devices. Consequently, our sampling scheme can be implemented on image sensors by making a straightforward modification to the control unit. To demonstrate the power of our approach, we have implemented a prototype imaging system with per-pixel coded exposure control using a liquid crystal on silicon (LCoS) device. Using both simulations and experiments on a wide range of scenes, we show that our method can effectively reconstruct a video from a single image maintaining high spatial resolution.

Published in:

Computer Vision (ICCV), 2011 IEEE International Conference on

Date of Conference:

6-13 Nov. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.