By Topic

Learning nonlinear distance functions using neural network for regression with application to robust human age estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Na Fan ; Dept. of Electron. Eng., East China Normal Univ., Shanghai, China

In this paper, a robust regression method is proposed for human age estimation, in which, outlier samples are corrected by their neighbors, through asymptotically increasing the correlation coefficients between the desired distances and the distances of sample labels. As another extension, we adopt a nonlinear distance function and approximate it by neural network. For fair comparison, we also experiment on the regression problem of age estimation from face images, and the results are very competitive among the state of the art.

Published in:

Computer Vision (ICCV), 2011 IEEE International Conference on

Date of Conference:

6-13 Nov. 2011