We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Action recognition in cluttered dynamic scenes using Pose-Specific Part Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Singh, V.K. ; Univ. of Southern California, Los Angeles, CA, USA ; Nevatia, R.

We present an approach to recognizing single actor human actions in complex backgrounds. We adopt a Joint Tracking and Recognition approach, which track the actor pose by sampling from 3D action models. Most existing such approaches require large training data or MoCAP to handle multiple viewpoints, and often rely on clean actor silhouettes. The action models in our approach are obtained by annotating keyposes in 2D, lifting them to 3D stick figures and then computing the transformation matrices between the 3D keypose figures. Poses sampled from coarse action models may not fit the observations well; to overcome this difficulty, we propose an approach for efficiently localizing a pose by generating a Pose-Specific Part Model (PSPM) which captures appropriate kinematic and occlusion constraints in a tree-structure. In addition, our approach also does not require pose silhouettes. We show improvements to previous results on two publicly available datasets as well as on a novel, augmented dataset with dynamic backgrounds.

Published in:

Computer Vision (ICCV), 2011 IEEE International Conference on

Date of Conference:

6-13 Nov. 2011