By Topic

Single-Switch High Step-Up Converters With Built-In Transformer Voltage Multiplier Cell

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yan Deng ; Coll. of Electr. Eng., Zhejiang Univ., Hangzhou, China ; Qiang Rong ; Wuhua Li ; Yi Zhao
more authors

In this paper, a built-in voltage gain extension cell is proposed to give a universal topology derivation on next-generation high step-up converters for large voltage gain conversion systems. Several improved single-switch high step-up converters with built-in transformer voltage multiplier cell are derived with some advantageous performance, which includes extremely large voltage conversion ratio, minimized power device voltage stress, effective diode reverse-recovery alleviation, and soft-switching operation. The turns ratio of the built-in transformer can be employed as another design freedom to extend the voltage gain, which shows great design flexibility. Compared with their active clamp counterpart, only one MOSFET is required to simplify the circuit configuration and improve the system reliability. The over resonance frequency and the below resonance frequency operation modes are studied to explore the circuit performance, and the key parameter design criterion is provided to show a valuable guidance for future industrial applications. Finally, the experimental results from a 500 W 36-380 V prototype are provided to validate the effectiveness of the main contributions in this paper.

Published in:

Power Electronics, IEEE Transactions on  (Volume:27 ,  Issue: 8 )