Cart (Loading....) | Create Account
Close category search window
 

Analysis, Modeling, and Implementation of a Multidevice Interleaved DC/DC Converter for Fuel Cell Hybrid Electric Vehicles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hegazy, Omar ; Dept. of Electr. Eng. & Energy Technol., Vrije Univ. Brussel, Brussels, Belgium ; Van Mierlo, J. ; Lataire, Philippe

Multiphase converter topologies for use in high-performance applications have received increasing interest in recent years. This paper proposes a novel multidevice interleaved boost converter (MDIBC) that interfaces the fuel cell with the powertrain of hybrid electric vehicles. In this research, a multidevice structure with interleaved control is proposed to reduce the input current ripples, the output voltage ripples, and the size of passive components with high efficiency compared with the other topologies. In addition, low EMI and low stress in the switches are expected. The proposed dc/dc converter is compared to other converter topologies such as conventional boost converter (BC), multidevice boost converter (MDBC), and two-phase interleaved boost converter (IBC) to verify its dynamic performance. Furthermore, a generalized small-signal model is derived for these dc/dc converters, which has not been previously discussed. A digital dual-loop control is designed to achieve the proper regulator for the converters with fast transient response. The dc/dc converter topologies and their controller are designed and investigated by using MATLAB/Simulink. Finally, the proposed converter (MDIBC) is experimentally validated with results obtained from a 30-kW prototype that has been built and tested in our laboratory based on TMS320F2808 DSP. The simulation and experimental results have demonstrated that the proposed converter is more efficient than other dc/dc converter topologies in achieving high performance and reliability for high-power dc/dc converters.

Published in:

Power Electronics, IEEE Transactions on  (Volume:27 ,  Issue: 11 )

Date of Publication:

Nov. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.