By Topic

Scale-Invariant Features for 3-D Mesh Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tal Darom ; Electrical Engineering Department, Bar-Ilan University, Ramat Gan, Israel ; Yosi Keller

In this paper, we present a framework for detecting interest points in 3-D meshes and computing their corresponding descriptors. For that, we propose an intrinsic scale detection scheme per interest point and utilize it to derive two scale-invariant local features for mesh models. First, we present the scale-invariant spin image local descriptor that is a scale-invariant formulation of the spin image descriptor. Second, we adapt the scale-invariant feature transform feature to mesh data by representing the vicinity of each interest point as a depth map and estimating its dominant angle using the principal component analysis to achieve rotation invariance. The proposed features were experimentally shown to be robust to scale changes and partial mesh matching, and they were compared favorably with other local mesh features on the SHREC'10 and SHREC'11 testbeds. We applied the proposed local features to mesh retrieval using the bag-of-features approach and achieved state-of-the-art retrieval accuracy. Last, we applied the proposed local features to register models to scanned depth scenes and achieved high registration accuracy.

Published in:

IEEE Transactions on Image Processing  (Volume:21 ,  Issue: 5 )