By Topic

Cross-term Elimination in Parallel Wiener Systems Using a Linear Input Transformation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Schoukens, M. ; Dept. ELEC, Vrije Univ. Brussel, Brussels, Belgium ; Rolain, Y.

Multivariate polynomials are often used to model nonlinear behavior, e.g., in parallel Wiener models. These multivariate polynomials are mostly hard to interpret due to the presence of cross terms. These polynomials also have a high amount of coefficients, and the calculation of an inverse of a multivariate polynomial with cross terms is cumbersome. This paper proposes a method to eliminate the cross terms of a multivariate polynomial using a linear input transformation. It is shown how every homogeneous polynomial described using tensors can be transformed to a canonical form using multilinear algebraic decomposition methods. Such tensor decomposition methods have already been used in nonlinear system modeling to reduce the complexity of Volterra models. Since every polynomial can be written as a sum of homogeneous polynomials, this method results in a decoupled description of any multivariate polynomial, allowing a model description that is easier to interpret, easier to use in a design, and easier to invert. This paper first describes a method to represent and decouple multivariate polynomials using tensor representation and tensor decomposition techniques. This method is applied to a parallel Wiener model structure, where a multiple-input-single-output polynomial is used to describe the static nonlinearity of the system. A numerical example shows the performance of the proposed method.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:61 ,  Issue: 3 )