By Topic

A X -Band Capacitor-Coupled QVCO Using Sinusoidal Current Bias Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
I-Shing Shen ; Dept. of Commun. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Jou, C.F.

This study introduces an X -band quadrature voltage-controlled oscillator (QVCO) based on two novel techniques: capacitor coupling and sinusoidal current biasing. The proposed QVCO achieves an excellent figure-of-merit (FOM) of 190.5 dBc/Hz. This study analyzes the properties of this QVCO, including its phase noise, oscillation frequency, and amplitude. To generate quadrature phase signals with low phase noise, the proposed design uses two capacitor-coupled LC-tank cores instead of active device-coupled cores. Sinusoidal currents through these capacitors bias the oscillator, increasing oscillation amplitude and reducing the phase noise contribution from cross-coupled transistors compared to existing QVCOs or VCOs biased with a constant current. These two techniques allow the proposed QVCO to achieve at least a theoretical 3 dB phase noise improvement compared to conventional LC-QVCOs. Implemented in a standard 0.18 μm CMOS process, the proposed QVCO had a frequency tuning range of 9.2 ~ 10.4 GHz and a phase noise of -115.7 dBc/Hz@1 MHz from a carrier of 10.4 GHz while consuming 3.6 mW with 1.5 V voltage supply.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:60 ,  Issue: 2 )