By Topic

Band-to-Band-Tunneling Leakage Suppression for Ultra-Thin-Body GeOI MOSFETs Using Transistor Stacking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vita Pi-Ho Hu ; Department of Electronics Engineering and the Institute of Electronics, National Chiao Tung University, Hsinchu, Taiwan ; Ming-Long Fan ; Pin Su ; Ching-Te Chuang

This letter indicates that the ultra-thin-body (UTB) germanium-on-insulator (GeOI) MOSFETs preserve the leakage reduction property of stacking devices, while the band-to-band-tunneling leakage of bulk Ge-channel devices cannot be reduced by stacking transistors. The seemingly contradictory behavior of the stack-effect factors is explained by the difference in the flows of band-to-band-tunneling hole fluxes for UTB GeOI and bulk Ge-channel devices and validated by TCAD mixed-mode simulations. At 300 K, the stack-effect factors of UTB GeOI MOSFETs range from 6.8 to 40 (N = 2) and from 12 to 142 (N = 3) at Vdd = 0.5-1 V. As the temperature increases or Vdd decreases, the stack-effect factor for UTB GeOI devices decreases, while the stack-effect factor for bulk Ge-channel MOSFETs increases, because the subthreshold leakage current becomes more significant at higher temperature or lower voltage with respect to the band-to-band-tunneling leakage current.

Published in:

IEEE Electron Device Letters  (Volume:33 ,  Issue: 2 )