By Topic

Control Over the Pressure Sensitivity of Bragg Grating-Based Sensors in Highly Birefringent Microstructured Optical Fibers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

18 Author(s)
Sulejmani, S. ; Vrije Univ. Brussel, Brussels, Belgium ; Sonnenfeld, C. ; Geernaert, T. ; Mergo, P.
more authors

We present fiber Bragg grating (FBG)-based hydrostatic pressure sensing with highly birefringent microstructured optical fibers. Since small deformations of the microstructure can have a large influence on the material birefringence and pressure sensitivity of the fiber, we have evaluated two microstructured fibers that were made from comparable fiber preforms, but fabricated using different temperature and pressure conditions. The magnitude and sign of the pressure sensitivity are found to be different for both fibers. We have simulated the corresponding change of the Bragg peak separation with finite-element models and experimentally verified our results. We achieve very high experimental sensitivities of -15 and 33 pm/MPa for both sensors. To our knowledge, these are the highest sensitivities ever reported for birefringent FBG-based hydrostatic pressure sensing.

Published in:

Photonics Technology Letters, IEEE  (Volume:24 ,  Issue: 6 )