Cart (Loading....) | Create Account
Close category search window

Photonic Generation and Wireless Transmission of Linearly/Nonlinearly Continuously Tunable Chirped Millimeter-Wave Waveforms With High Time-Bandwidth Product at W-Band

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
6 Author(s)
Shi, J.-W. ; Dept. of Electr. Eng., Nat. Central Univ., Jhongli, Taiwan ; Kuo, F.-M. ; Nan-Wei Chen ; Set, S.Y.
more authors

We demonstrate a novel scheme for photonic generation of chirped millimeter-wave (MMW) pulse with ultrahigh time-bandwidth product (TBP). By using a fast wavelength-sweeping laser with a narrow instantaneous linewidth, wideband/high-power photonic transmitter-mixers, and heterodyne-beating technique, continuously tunable chirped MMW waveforms at the W-band are generated and detected through wireless transmission. Compared with the reported optical grating-based wavelength-to-time mapping techniques for chirped pulse generation, our approach eliminates the problem in limited frequency resolution of grating, which seriously limits the continuity, tunability, and TBP of the generated waveform. Furthermore, by changing the alternating current (AC) waveform of the driving signal to the sweeping laser, linearly or nonlinearly continuously chirped MMW pulse can be easily generated and switched. Using our scheme, linearly and nonlinearly chirped pulses with record-high TBPs (89-103 GHz/ 50 μs/7 × 105) are experimentally achieved.

Published in:

Photonics Journal, IEEE  (Volume:4 ,  Issue: 1 )

Date of Publication:

Feb. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.