System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

AH+-Tree: An Efficient Multimedia Indexing Structure for Similarity Queries

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fleites, F.C. ; Sch. of Comput. & Inf. Sci., Florida Int. Univ., Miami, FL, USA ; Shu-Ching Chen ; Chatterjee, K.

This paper presents the AH+-tree, a balanced, tree-based index structure that efficiently supports Content-Based Image Retrieval (CBIR) through similarity queries. The proposed index structure addresses the problems of semantic gap and user subjectivity by considering the high-level semantics of multimedia data during the retrieval process. The AH+-tree provides the same functionality as the Affinity-Hybrid Tree (AH-Tree) but utilizes the high-level semantics in a novel way to eliminate the I/O overhead incurred by the AH-Tree due to the process of affinity propagation, which requires a complete traversal of the tree. The novel structure of the tree is explained, and detailed range and nearest neighbor algorithms are implemented and analyzed. Extensive discussions and experiments demonstrate the superior efficiency of the AH+-tree over the AH-Tree and the M-tree. Results show the AH+-tree significantly reduces I/O cost during similarity searches. The I/O efficiency of the AH+-tree and its ability to incorporate high-level semantics from different machine learning mechanisms make the AH+-tree a promising index access method for large multimedia databases.

Published in:

Multimedia (ISM), 2011 IEEE International Symposium on

Date of Conference:

5-7 Dec. 2011