Cart (Loading....) | Create Account
Close category search window
 

Active Metamaterial-Inspired Broad-Bandwidth, Efficient, Electrically Small Antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ning Zhu ; Dept. of Electr. & Comput. Eng., Univ. of Arizona, Tucson, AZ, USA ; Ziolkowski, R.W.

Realistic designs of broad-bandwidth metamaterial-inspired electric and magnetic antennas are characterized numerically. By augmenting their narrow bandwidth counterparts with internal non-Foster elements, active metamaterial unit cells are introduced as near-field resonant parasitic (NFRP) elements. The driven and NFRP elements in each presented case are designed to achieve nearly complete matching of the entire system to a 50- Ω source without any matching network and to yield high radiation efficiencies over their FBW10 dB bandwidths that are more than 75 times their original values.

Published in:

Antennas and Wireless Propagation Letters, IEEE  (Volume:10 )

Date of Publication:

2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.