By Topic

Unsupervised learning of video content using Self-Organizing Maps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gaborski, R.S. ; Coll. of Comput. & Inf. Sci., Rochester Inst. of Technol., Rochester, NY, USA ; Yuheng Wang

Video classification and retrieval is currently performed manually by individuals adding semantic annotation or creating a description of the videos. Current algorithmic methods often suffer from semantic gap between visual content and human interpretation. This paper proposes a biologically inspired system that automatically cluster videos based on visual attributes. For feature extraction, each video frame is processed with a multi-scale, multi-orientation Gabor filter. The resulting Gabor-filtered sub-band images are down-sampled on a regular grid to achieve global representation of the image. For clustering, the system employs an unsupervised, adaptive algorithm, the Self-Organizing Map, resulting in the automatic discovery of video content. SOM's are single layer, two-dimensional neural networks that use the delta update rule and competition based on-line learning scheme to learn internal relationship of input data without supervision. The baseline framework is deployed and evaluated using a small dataset. Initial system results reveal effective mapping of input video frames and topological regions on SOM.

Published in:

Image Processing Workshop (WNYIPW), 2011 IEEE Western New York

Date of Conference:

14-14 Nov. 2011