By Topic

Identifying multi-view patterns with hierarchy and granularity based multimodal (HGM) cogntive model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yee Ling Boo ; Sch. of Inf. Syst., Deakin Univ., Burwood, VIC, Australia ; Alahakoon, D.

Humans perceive entities such as objects, patterns, events, etc. as concepts, which are the basic units in human intelligence and communications. In addition, perceptions of these entities could be abstracted and generalised at multiple levels of granularity. In particular, such granulation allows the formation and usage of concepts in human intelligence. Such natural granularity in human intelligence could inspire and motivate the design and development of pattern identification approach in Data Mining. In our opinion, a pattern could be perceived at multiple levels of granularity and thus we advocate for the co-existence of hierarchy and granularity. In addition, granular patterns exist across different sources of data (mul-timodality). In this paper, we present a cognitive model that incorporates the characteristics of Hierarchy, Granularity and Multimodality for multi-view patterns identification in crime domain. Such framework is implemented with Growing Self Organising Maps (GSOM) and some experimental results are presented and discussed.

Published in:

Granular Computing (GrC), 2011 IEEE International Conference on

Date of Conference:

8-10 Nov. 2011