By Topic

Scalable processors in the billion-transistor era: IRAM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)
Kozyrakis, C.E. ; California Univ., Berkeley, CA, USA ; Perissakis, S. ; Patterson, D. ; Anderson, T.
more authors

Members of the University of California, Berkeley, argue that the memory system will be the greatest inhibitor of performance gains in future architectures. Thus, they propose the intelligent RAM or IRAM. This approach greatly increases the on-chip memory capacity by using DRAM technology instead of much less dense SRAM memory cells. The resultant on-chip memory capacity coupled with the high bandwidths available on chip should allow cost-effective vector processors to reach performance levels much higher than those of traditional architectures. Although vector processors require explicit compilation, the authors claim that vector compilation technology is mature (having been used for decades in supercomputers), and furthermore, that future workloads will contain more heavily vectorizable components

Published in:

Computer  (Volume:30 ,  Issue: 9 )