Cart (Loading....) | Create Account
Close category search window

A Robust Signal Preprocessing Chain for Small-Footprint Waveform LiDAR

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jiaying Wu ; Center for Imaging Sci., Rochester Inst. of Technol., Rochester, NY, USA ; van Aardt, J.A.N. ; McGlinchy, J. ; Asner, G.P.

The extraction of structural object metrics from a next-generation remote sensing modality, namely waveform Light Detection and Ranging (LiDAR), has garnered increasing interest from the remote sensing research community. However, the raw incoming (received) LiDAR waveform typically exhibits a stretched, misaligned, and relatively distorted character. In other words, the LiDAR signal is smeared and the effective temporal (vertical) resolution decreases, which is attributed to a fixed time span allocated for detection, the sensor's variable outgoing pulse signal, off-nadir scanning, the receiver impulse response impacts, and system noise. Theoretically, such a loss of resolution and increased data ambiguity can be remediated by using proven signal preprocessing approaches. In this paper, we present a robust signal preprocessing chain for waveform LiDAR calibration, which includes noise reduction, deconvolution, waveform registration, and angular rectification. This preprocessing chain was initially validated using simulated waveform data, which were derived via the digital imaging and remote sensing image generation modeling environment. We also verified the approach using real small-footprint waveform LiDAR data collected by the Carnegie Airborne Observatory in a savanna region of South Africa and specifically in terms of modeling woody biomass in this region. Metrics, including the spectral angle for cross-section recovery assessment and goodness-of-fit (R2) statistics, along with the root-mean-squared error for woody biomass estimation, were used to provide a comprehensive quantitative evaluation of the performance of this preprocessing chain. Results showed that our approach significantly increased our ability to recover the temporal signal resolution, improved geometric rectification of raw waveform LiDAR, and resulted in improved waveform-based woody biomass estimation. This preprocessing chain has the potential to be applied across the board for h- gh fidelity processing of small-footprint waveform LiDAR data, thereby facilitating the extraction of valid and useful structural metrics from ground objects.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:50 ,  Issue: 8 )

Date of Publication:

Aug. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.